C7 – Organic Chemistry

Crude oil

Crude oil = a mixture of **hydrocarbons.**

- It is a non-renewable resource (fossil fuel)
- Made from remains of dead sea creatures compressed over millions of years

Hydrocarbons - molecules containing hydrogen and carbon only.

Two types of hydrocarbons are **alkanes** and **alkenes**. The hydrocarbons in crude oil are mostly alkanes.

<u>Alkanes</u>

- Alkanes = saturated hydrocarbons.
- Held together by single covalent bonds.
- General formula = C_nH_{2n+2}
- Have different boiling points longer the chain, higher the boiling point

You need to remember the names, and formulas of the first 4 alkanes.

Fractional Distillation

- Used to **separate** the mixtures of hydrocarbons in **crude oil**.

Steps in Fractional Distillation

- 1. Crude oil enters **fractioning column** and is heated to boiling point so the hydrocarbons evaporate.
- 2. It is **cooler** at the **top** of the fractionating column and **hotter** at the **bottom**.
- 3. Vapours rise up the column and, as they rise, they cool
- 4. The different hydrocarbons condense at different **boiling points**
- 5. The different 'fractions' have different properties

Uses of the different fractions

Supply and demand

Product	Supply in tonnes	Demand in tonnes
petrol	100	300
diesel	200	100
heating oil	250	50

After fractional distillation, we find:

- we have more of the long chain hydrocarbons than we need
- There are not enough short chain hydrocarbons.
- Short chain are more useful as they are more flammable so can be used as fuels.

C7 – Organic Chemistry

Cracking

- This is done to solve the problem of having too many long chain hydrocarbons and not enough short ones
- Long hydrocarbons are **broken down** into smaller, more useful hydrocarbons.
- Short chain hydrocarbons are more useful as they are more flammable

Two types of cracking: catalytic and steam cracking.

<u>Catalytic cracking</u> – needs a high temperature and a catalyst.

Steam cracking - high temperature and steam

- Cracking produces a **short-chain alkane** and an **alkene.**

Cracking equations

Same number of carbon and hydrogen atoms on both sides of the equation:

long chain hydrocarbon shorter, more alkene

<u>Alkenes</u>

- Alkenes are unsaturated hydrocarbons.
- Contain carbon-carbon **double bonds**.

Test for Alkenes

Use bromine water to test for alkenes.

If an alkene is present, the bromine water turns from orange/brown to colourless.

Alkanes do not react with bromine water.

Uses for alkenes:

- Can be used as fuels
- Can be used as a starting material for other chemicals
- Can be used to make polymers (e.g. plastic)

Polymers

- Polymers are large molecules made of many repeating units (monomers)
- Alkenes (small molecules) are joined together to make polymers

Poly(ethene) – plastic bags/drinks bottles

Poly(propene) – strong tough plastics

Drawing and naming polymers

- 1. Redraw the **monomer given**, but without the double bond. Make sure to copy all other elements exactly.
- 2. Put brackets around the monomer and extend joining bonds out through the brackets on both sides
- 3. Add an 'n' at the bottom right of the bracket
- 4. To name the polymer, you put **poly** in front of the monomer name

E.g.:

Draw and name the polymer made from the monomer ethene:

Ethene

Poly ethene

Combustion of Hydrocarbons

Combustion means burning.

<u>Complete combustion -</u> when there is a good supply of **oxygen** for a fuel to burn. Fuel + oxygen \rightarrow carbon dioxide + water

Incomplete combustion - not enough oxygen Products are carbon monoxide and water. Carbon monoxide = poisonous gas

Polymer